8 research outputs found

    Improving the QoS support in HCCA-EDCA mixed IEEE 802.11e networks

    Get PDF
    The multimedia applications require the network to provide a trustworthy service suitable to meet their Quality of Service and real-time requirements, managing efficiently the available resources. In this paper we present a performing solution for the multimedia support over IEEE 802.11e networks that aims to combine both its Medium Access Control functions, Enhanced Distributed Channel Access (EDCA) and Hybrid Coordination Function (HCF) Controlled Channel Access (HCCA), in order to reduce the experienced delay. The proposed scheduler, local to the node, cooperates with the centralized HCCA scheduler, integrating the offered service using the EDCA available resources. The simulations show that the overall scheduler improves the performance with respect to the HCCA schedulers in terms of scheduling efficiency and delay, allowing to guarantee the expected service level

    Design and implementation of a scheduler for HCCA and EDCA IEEE 802.11e networks

    No full text
    With ever increasing popularity of multimedia applications, people want voice, audio and broadband video services like High Denition TV (HDTV) through WLAN connections. Unlike the traditional best effort data applications, multimedia applications require Quality of Service (QoS) support such as guaranteed bandwidth and bounded delay/jitter. The original 802.11 standard does not take QoS into account. Hence to provide QoS support IEEE 802.11 standard group has specied a new IEEE 802.11e standard. IEEE 802.11e supports QoS with two channel access mechanism: HCCA and EDCA. In this dissertation we present a schedu ler that allows QSTA to use both access function for the same flow

    Characterization of two Pantoea strains isolated from extra-virgin olive oil

    No full text
    Abstract The olive oil is an unfavorable substrate for microbial survival and growth. Only few microorganisms use olive oil fatty acids as carbon and energy sources, and survive in the presence of olive oil anti-microbial components. In this study, we have evaluated the occurrence of microorganisms in 1-year-stored extra-virgin olive oil samples. We detected the presence of bacterial and yeast species with a recurrence of the bacterium Stenotrophomonas rhizophila and yeast Sporobolomyces roseus. We then assayed the ability of all isolates to grow in a mineral medium supplemented with a commercial extra-virgin olive oil as a sole carbon and energy source, and analyzed the utilization of olive oil fatty acids during their growth. We finally focused on two bacterial isolates belonging to the species Pantoea septica. Both these isolates produce carotenoids, and one of them synthesizes bioemulsifiers enabling the bacteria to better survive/growth in this unfavorable substrate. Analyses point to a mixture of glycolipids with glucose, galactose and xylose as carbohydrate moieties whereas the lipid domain was constituted by C6–C10 β-hydroxy carboxylic acids

    The complete 12 Mb genome and transcriptome of Nonomuraea gerenzanensis with new insights into its duplicated "magic" RNA polymerase

    No full text
    In contrast to the widely accepted consensus of the existence of a single RNA polymerase in bacteria, several actinomycetes have been recently shown to possess two forms of RNA polymerases due the to co-existence of two rpoB paralogs in their genome. However, the biological significance of the rpoB duplication is obscure. In this study we have determined the genome sequence of the lipoglycopeptide antibiotic A40926 producer Nonomuraea gerenzanensis ATCC 39727, an actinomycete with a large genome and two rpoB genes, i.e. rpoB(S) (the wild-type gene) and rpoB(R) (the mutant-type gene). We next analyzed the transcriptional and metabolite profiles in the wild-type gene and in two derivative strains over-expressing either rpoB(R) or a mutated form of this gene to explore the physiological role and biotechnological potential of the "mutant-type" RNA polymerase. We show that rpoB(R) controls antibiotic production and a wide range of metabolic adaptive behaviors in response to environmental pH. This may give interesting perspectives also with regard to biotechnological applications
    corecore